skills

Calculation

Written by:
Meriel Hutton RGN, BA, CertEd, PhD, Senior Associate Dean (Undergraduate Studies, Nursing and Midwifery), School of Health, University of Wolverhampton
Email: meriel.hutton@wlv.ac.uk and Helen Gardner RGN, RSCN, BSC (Hons), MA, Senior Lecturer, Faculty of Health and Community Care, University of Central England Email: Helen.Gardner@uce.ac.uk

Paediatric Nursing.

Paediatric Nursing

The Heights, 59-65 Lowlands Road, Harrow, Middlesex HA1 3AE

To subscribe call 08457726100
www.paediatricnursing.co.uk

PNEG CAL
Cover picture by Corbis

Contents

3 About this guide

4 Section 1 - The basics
4 Common sense and estimation
4 Mental arithmetic and easy calculations
4 Using a calculator
5 Using a formula
6 Section 2 - Metric units, conversions between units and percentages

6 Metric units
7 Conversion between units
7 Conversion between metric and imperial units

8 Percentages
9 Section 3 - Fluid calculations
10 Section 4 - Drug calculations
10 Straightforward prescriptions
13 Dosage by body weight
13 Reconstituted drugs
13 Calculations involving time - continuous infusions

16 Answers to practice exercises
17 References
© Copyright RCN Publishing Company Ltd 2005. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

Safe and effective administration of medicines to children requires a combination of professional competence, best available evidence and partnership (DH 2004) with each medicine administration event being viewed in the context of the total care of the child, young person and family (Watt 2003). Calculations are one part of this complex area of practice but there is evidence to suggest that one in six medication errors is due to dose miscalculation (Hutton 2003). The complex calculations often required for children's dosages make the risk of miscalculation greater than for adults, although the number of errors occurring is about the same (DH 2004). However, because they are less able to compensate physiologically, the potential for harm increases threefold in children (Woodrow 1998, DH 2004).

The need for complex calculations is due in part to the lack of licensed medicines in suitable formulations for children; children's dosages are calculated by weight or surface area on the basis of adult dosages. Paediatric formularies are available (for example, RCPCH 2003) and these should be consulted for dosages based on the weight of the child (Lapham and Agar 2003).

Practitioners administering medicines must be aware of their own accountability within a framework of legislation and professional regulation and guidance, specifically the Nursing and Midwifery Council (NMC) Code of Conduct (NMC 2002), Guidelines for the Administration of Medicines (NMC 2004a) and Guidelines for Records and Record Keeping (NMC 2004b).

About this guide

This guide is for all nurses working with neonates, children and young people to support their learning and revision of calculation skills. It does not cover every type of calculation but aims to provide guidance and practical exercises for commonly encountered problems. The guide starts with straightforward calculations and progresses to more complex ones, such as those needed by nurses working in paediatric intensive care. Examples used include medication based on body weight; although paediatric drug dosages may sometimes be based on surface area, these calculations are not covered here. Other examples include reconstitution of medicines for which policies may differ between organisations. Nurses should adhere to local policies where they exist.

Mathematics used in children's nursing is mainly arithmetic, used for fluid calculations, measurement and conversions between units. Nurses need to understand the metric system and the relationship between units. As parents are often more conversant with imperial units (pounds and ounces, feet and inches), the nurse should be able to convert from one system of units to the other, either by using conversion charts or, in the absence of a conversion chart, by calculating from first principles.

The guide is divided into sections covering the different kinds of calculations you may meet. There are worked examples to illustrate the different concepts and a short section of practice problems at the end of each section
for you to complete. Answers are provided at the end of the guide. If you get the answers correct, carry on to the next section. If your answers are wrong, go back to the worked example and follow it through step by step before trying the practice problems again (*see notice below).

Section 1

The basics

1.1 Common sense and estimation

The golden rule of any calculation that you have to carry out is to have some idea of what a sensible answer should be. This is much easier with experience, but 'common-sense' knowledge can soon be developed if you are reflective in your own practice. As well as 'common sense knowing', the nurse needs to develop estimation skills, particularly where calculations involve decimals or several stages of computation. It is also sensible to check any calculation by working it backwards or using a different method. In the case of medication calculations, it is not safe to assume that the prescription is correct and another check should be based on the recommended dose range in the paediatric formulary in local use.

1.2 Mental arithmetic and easy calculations

Some calculations required in children's nursing are so straightforward that mental arithmetic is all that you may need. There are two
common ways of calculating using mental arithmetic. Look at the following example:

A child is prescribed 5 mg of a drug that is available in liquid form as 2 mg per ml .

Estimate first - do you need more or less than the available dosage?

Method 1

Look for relationships between the numbers involved.
You may recognise that 5 is $21 / 2$ times 2 .
So, if there are 2 mg in 1 ml , there will be
5 mg in $2 \frac{1}{2} \times 1 \mathrm{ml}$.
Required amount $=2.5 \mathrm{ml}$.

Method 2

If you know what volume of the liquid contains 1 mg of the drug, then you can multiply it by 5 to calculate the volume containing 5 mg .
2 mg per ml indicates that 1 mg would be found in $1 / 2 \mathrm{ml}$ or 0.5 ml .
If $1 \mathrm{mg}=0.5 \mathrm{ml}$, then $5 \mathrm{mg}=0.5 \times 5=2.5$.
Required amount is 2.5 ml .

1.3 Using a calculator

Some calculations needed in paediatric nursing require more than mental arithmetic skills. It is recommended that you use a calculator for the more complex arithmetic required for some of

[^0]the computations within this guide. Note that estimation of what is a sensible answer is very important whichever way you choose to do the calculations. The calculator can respond only to what is entered by the user and errors can occur. So, for it to be a useful tool, the nurse needs to know how that particular calculator works. Read the instructions that accompany the calculator and practice using it with simple calculations to which you know the answer.

1.4 Using a formula

There is no single right way to calculate drug dosages, as seen above, but there is one formula, in the form of an equation, that always works. The formula is worth learning, but will be easier to remember if you know how it was constructed.

Example 1

A child is prescribed 100 mg fluconazole, which is supplied as capsules, each containing 50 mg . The nurse must work out how many capsules to give. Two 50 mg capsules would provide 100 mg of drug - easy! Let's look at how you got that answer:

The dose prescribed, or what you want, was 100 mg .
The dose per available capsule, or what you've got, was 50 mg .

To get two capsules, you divided 100 by 50 .
Dose $=\frac{\text { what you want }}{\text { what you've got }}=\frac{100}{50}=2$ capsules.

Let's see if the formula will work for a different prescription.

Example 2

A toddler is prescribed flucloxacillin 250 mg . This drug is available in syrup form, 125 mg in 5 ml . How much should you give?

First estimate a sensible dose. If 5 ml contains 125 mg , then you'll need more than 5 ml for a dose of 250 mg . In fact you can probably see that 125 is half of 250 and so a dose of 10 ml is required. Would using the formula give this answer?
$\frac{\text { what you want }}{\text { what you've got }}=\frac{250}{125}$
The answer is 2 . Is this right? Two 'whats'?
It can't be 2 mls because we have estimated that it should be more than 5 mls .

Remember that each 125 mg dose of what we have, is contained in 5 ml and so the answer is two lots of 5 ml , in other words, 10 ml . So, to get the correct answer, we also need to multiply by the measure that the available drug is in.

Let's add this to the formula to make it work for this type of prescription.

Dose $=\frac{\text { what you want }}{\text { what you've got }} \times$ what's it's in
Check by substituting the values we have above. The answer is 10 ml , which is what we had already decided.

1.1 Practice exercises

Use the formula to work out the volume you would give for the following:

1. A child is prescribed oral chloral hydrate 250 mg . The drug is available as an elixir containing 200 mg in 5 ml .
2. Prescription is oral phenobarbital (phenobarbitone) 45 mg . It is available as 15 mg in 5 ml .
3. Metronidazole comes as 100 mg in 20 ml . The child is prescribed 75 mg IV .
4. Oral paracetamol 80 mg is prescribed. It is available as a syrup with 120 mg in 5 ml .
5. Baby is to have 25 microgram digoxin IV. It is available as 500 microgram in 2 ml .

In Example 1, the formula worked because the dose available was per capsule. In other words, 'what it's in' was 1 (capsule).

Section 2

Metric units, conversion between units and percentages

2.1 Metric units

The metric system is based on unit measures such as gram and litre. The prefixes added to the base unit mean the same, whatever the type of measurement. Thus, a kilometre is 1000 metre just as a kilogram indicates 1000 gram.
(See Table 1 for a fuller range of metric units.)

As you can see in Table 1, the relationship between most of the units used in nursing is in multiples of 1000. In children's nursing, drugs may be prescribed in gram, milligram, microgram or even nanogram. The abbreviations for these last three units look very similar and so it is recommended good practice that anything other than milligram (mg) is written out in full. In some places you may see microgram written mcg , but be aware of local policies on this. This abbreviation will be used in this guide.

Table 1: Common units of metric measurement and their relationship to the base unit

Kilo (base $\times 1000)$	Base unit	Milli (base $\div 1000)$	Micro (base $\div 1,000,000)$	Nano (base $\div 1,000,000,000)$
Kilogram (kg)	Gram (g)	Milligram (mg)	Microgram ($\mu \mathrm{gg}$ or mcg)	Nanogram (ng)
Kilometre (km)	Metre (m)	Millimetre (mm)	Micrometer or micron ($\mu \mathrm{m})$	
	Litre (I)	Millilitre (ml)		

2.1 Practice exercises

Test your working knowledge of decimal units by trying the following:

1. $0.05 \mathrm{~g}=$ how many milligram?
2. 0.25 microgram = how many nanogram?
3. 0.025 litre $=$ how many millilitre
4. 1575 microgram = how many milligram?
5. 750 milligram $=$ how many gram?

2.2 Practice exercises

A drug is available as 1 mg in 20 ml :

1. How many microgram per ml?
2. What volume contains 10 microgram?
3. How many nanogram per ml?
4. What volume contains 500 nanogram?
5. How many nanogram in 0.25 ml ?

2.2 Conversion between units

Because children come in a wide range of sizes, drug doses differ considerably between patients. You need to be confident in recognising units and in changing from one to another.

Example 3

A baby is prescribed 750 mcg of a drug that is available in liquid form as 1 mg in 20 ml . Before working out the amount needed, you need to recognise that the units involved are different. To apply the formula, you need to know how many micrograms there are in 20 ml .

This one is easy, $1 \mathrm{mg}=1000 \mathrm{mcg}$.

And so there are 1000 mcg in 20 ml and you can apply the formula to work out the amount required substituting this value.

The calculation becomes: $\frac{750}{1000} \times \frac{20}{1}=15 \mathrm{ml}$.

2.3 Conversion between metric and imperial units

Children's medicines are nearly always prescribed using a dose per kilogram basis. To check whether what you are giving is a safe dose, you need to know the weight of the child, at least approximately. Many clinics have weight conversion charts to which you can refer, but there may be an occasion when you will have to rely on your own resources and convert the weight from imperial to metric or vice versa. How do you do it?

The easiest conversion factor to remember is that 1 kg is 2.2 pounds. You will also need to remember that 14 pounds make a stone and there are 16 ounces in a pound.

Example 4

Converting weight from imperial to metric According to the parents, a child weighs 1 stone 8 lb , what is this as metric measure?

Step 1: Change the weight into pounds by multiplying the stones by 14 . 1 stone $8 \mathrm{lb}=(1 \times 14)+8$ pounds $=$ 22 pounds.

Step 2: Convert the pounds into kg by dividing by 2.2.

The child weighs $(22 \div 2.2) \mathrm{kg}=10 \mathrm{~kg}$.

Example 5

Converting weight from metric to imperial
A baby weighs 3.6 kg but parents want to know what this is as imperial measure.

Step 1: Change the kilogram into pounds.
$1 \mathrm{~kg}=2.2 \mathrm{lb}$, so multiply by 2.2 .

$$
3.6 \mathrm{~kg}=2.2 \times 3.6 \mathrm{lb}=7.92 \mathrm{lb} \text {. }
$$

This is approximately 8lb, but to be more exact...

Step 2: Convert 0.92lb to ounces.
$1 \mathrm{lb}=16 \mathrm{zz}$, so $0.92 \mathrm{lb}=0.92 \times 16 \mathrm{oz}$ $=14.7 \mathrm{oz}$.

Step 3: Conclusion: The baby weighs 71b $150 z$ (to the nearest ounce).

2.4 Percentages (\%)

Solutions used in nursing are sometimes prepared as percentage solutions. Think of 5\% glucose, a common intravenous solution. In most cases, the \% is simply a descriptive label indicating, in this case, that there are 5 parts of glucose per 100 parts of water. 'Per cent' literally means 'per 100'.

Some drugs, particularly local anaesthetics, come in different percentage solutions. As they are usually prescribed in either milligram per kilogram or microgram per kilogram, the nurse needs to recognise what the \% label means.

Take 1% lidocaine (lignocaine) as an example. How many mg per ml? 1% means 1 in 100.

By convention 1 ml is equivalent to 1 g , and so, 1% lidocaine means 1 g in 100 ml .

This means $1000 \mathrm{mg}=100 \mathrm{ml}$.
1 ml of 1% lidocaine will therefore contain $\frac{1000}{100} \mathrm{mg}$ of lidocaine.
1% lidocaine is equivalent to 10 mg per ml .
2.4 Practice exercises

Complete the following table for lidocaine preparations:

Lidocaine	Mg per ml	Microgram per ml
0.1%		
0.2%		
0.5%	$10 \mathrm{mg} / \mathrm{ml}$	
1%		
2%		
5%		

Section 3

Fluid calculations

As pumps are normally used to deliver IV fluids to children, IV rate calculations are not covered in this guide. However, correct calculation of fluid balance is particularly vital in sick babies and children. Feeds have to be entered into the equation and all fluid measured, including drug volumes. The type of calculation that the nurse may need to make is to work out what volume of maintenance feed can be given within the total fluid allowance. This allows the dietitian to make up the content appropriately. The calculation may involve percentages, addition and subtraction.

Example 6

An Infant weighing 12 kg is prescribed 75% of maintenance fluids over 24 hours. How much of the hourly intake should be feed?

According to local policy, 100\% maintenance for a 12 kg child is $45 \mathrm{ml} /$ hour.

So what is 75% of $45 \mathrm{ml} / \mathrm{hr}$?
First do a rough estimate
$75 \%=3 / 4$ so the amount must be less than
$75 \%=3 / 4$ so the amount must be less than
45 (the whole amount) but more than 22 (approx half).
$75 \%=\frac{75}{100}: \frac{75}{100} \times \frac{45}{1}=\frac{135}{4}=33.75$.
So the child should be receiving a total of 33.75 ml per hour.

But when you look at the prescription sheet, you see that continuous infusions of various drugs amount to $5 \mathrm{ml} /$ hour and antibiotics add another 15 ml every six hours. So what is the amount of feed that can be given per hour?

First calculate the total volume of prescribed drugs per hour.

IV infusions $=5 \mathrm{ml} /$ hour PLUS antibiotics $=$ 15 ml in 6 hours $=15 \div 6 \mathrm{ml} / \mathrm{hr}=2.5 \mathrm{ml} / \mathrm{hr}$.

Total volume of infusions/drugs per hour is 7.5 ml .

Hourly fluid allowance 33.75
-7.5
Therefore child can be given feed of:
$26.25 \mathrm{ml} / \mathrm{hr}$

3.1 Practice exercises

A baby of 3 kg (prescribed 100\% maintenance $12 \mathrm{ml} / \mathrm{hr}$) is receiving $3.5 \mathrm{ml} / \mathrm{hr}$ via IV infusion and 10.8 ml of drugs 6 hourly. What volume of feed should be given hourly?

A 5 kg baby is prescribed 50% maintenance fluids ($100 \%=20 \mathrm{ml} / \mathrm{hr}$). A total volume of $4.2 \mathrm{ml} /$ hour is being given via IV infusion and 10 ml by bolus 4 hourly. What volume of feed should be given hourly?

Section 4

Drug calculations

This section gives worked examples and practice exercises covering a variety of drug calculations required by children's nurses starting with the more straightforward and progressing to more complex calculations such as those needed for paediatric intensive care nursing.

Step 1: Use the recommended dose range to check that the prescribed amount is sensible, remembering to take into account the size of the child, route prescribed and frequency of the dose.

Step 2: Check that the drug is available in the same units as the prescription and work out an approximate amount.

Step 3: Use your chosen method for calculating (see section 1) or apply the formula: $\frac{\text { what you want }}{\text { what you've got }} \times$ what it's in $=$ dose.

Step 4: Check this answer against the approximation from step 2.

4.1 Straightforward prescriptions

Example 8 (page 11)

Step 1: Recommended dose for one to five years is 2.5 mg , which is the prescribed amount.

Step 2: 2 mg in 5 ml is the same units as prescription and 2.5 mg will be just over 5 ml .

Step 3: Use your chosen method for calculating (see section 1) or substitute the known values in the formula:

$$
\frac{2.5}{2} \times \frac{5}{1}=\frac{12.5}{2} \mathrm{ml}=6.25 \mathrm{ml}
$$

All drug calculations can be carried out using the following 4 steps:

| Example 8 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Age | Drug | Amount | Route | Frequency |
| 18 months | Diazepam | 2.5 mg | Oral | Single dose (pre-med) |
| | | | | |

Step 4: This is near the estimated amount from step 2.

Step 5: Conclusion: 6.25 ml of diazepam is a safe amount to give orally for premedication.

4.1 Practice exercises

Following steps 1 to 4, calculate the amount to be given for each dose of the following and decide whether it is safe to give:

| 1 | Age | Drug | Amount | Route |
| :--- | :--- | :--- | :--- | :--- | Frequency

Preparation: Capsules containing 500 mg
Recommended dose for H.pylori in 12 to 18 years is 1 g , twice daily (bd)

2 Age
Drug
Amount
Route
Frequency
3 years
Chlorphenamine
1 mg
Oral
3 times/day
Preparation: Oral liquid 2 mg in 5 ml
Recommended dose range for 2 to 5 years is $1-2 \mathrm{mg}$, three times a day (tds)

3	Age	Drug	Amount	Route	Frequency
	8 years	Cotrimoxazole	480 mg	Oral	Twice daily

Preparation: Paediatric suspension 240 mg in 5 ml
Recommended dose range for 6 to 12 years is 480 mg , twice daily (bd)

Example 9 (see 4.2, page 13)
Age Weight Drug
5 years 19 kg Digoxin 95 microgram Oral Daily
Preparation: oral elixir containing 50 microgram per ml
Recommended dose is 5 microgram per kg by either oral of IV route, daily

4.2 Practice exercises (see 4.2, page 13)
 Following steps 1 to 4, calculate the amount to be given for each dose of the following and check by calculating the recommended range:

1 Age Weight Drug Amount Route Frequency
4 months 6.5 kg Furosemide 7.5 mg IV Twice daily
Preparation: Ampoules containing 20 mg in 2 ml
Recommended dose range age 1 month to 2 years is $1-2 \mathrm{mg} / \mathrm{kg} \mathrm{bd}$

2 Age Weight Drug Amount Route Frequency
18 months 11 kg Sodium valporate $140 \mathrm{mg} \quad$ Oral Twice daily

Preparation: Liquid containing 200 mg in 5 ml
Recommended dose range 1 month to 12 years is $12.5-15 \mathrm{mg} / \mathrm{kg}$ bd

| 3 | Age | Weight | Drug | Amount | Route |
| :--- | :--- | :--- | :--- | :--- | :--- | Frequency

Preparation: Oral suspension 2 microgram per ml
Recommended dose range for 2 to 12 years is $15-30$ nanogram $/ \mathrm{kg}$, Daily

4 Age	Weight	Drug	Amount	Route	Frequency
2 months	4.5 kg	Ranitidine	4.5 mg	IV	3 times daily

Preparation: Ampoules 50 mg in 2 ml
Recommended dose range for 1 month to 18 years is $1 \mathrm{mg} / \mathrm{kg}, 2-4$ times daily

4.2 Dosage by body weight

(Example 9, page 12)
Step 1: Recommended daily dose of digoxin is 5 microgram per kg by either oral or intravenous route.
For a 19kg child, this would be 5 x 19 mcg daily.
$5 \times 19=95 \mathrm{mcg}$.
This is exactly the amount prescribed and so it is safe to give.

Step 2: Units are the same for prescription and preparation.
50 mcg in 1 ml would equate to 100 mcg in 2 ml .
For 95 mcg , your answer should be just under 2 ml .

Step 3: Use your chosen method for calculating or apply the formula to give:

$$
\frac{95}{50} \times \frac{1}{1}=\frac{95}{50} \mathrm{ml}=1.9 \mathrm{ml} .
$$

Amount to be administered is 1.9 ml . Check against the approximation from step 2.
1.9 ml is just under 2 ml as predicted.

Step 4: Conclusion: 1.9 ml of the digoxin elixir is a safe amount to give orally.

Now try practice exercise 4.2.

4.3 Reconstituted drugs

Some drugs are available only in powdered form and require reconstitution with a diluent before they can be administered as a liquid. The actual amount of powder adds volume which is called the displacement value. As this differs depending on the solubility of the drug concerned, there are usually local pharmacy guidelines available to guide the nurse in the reconstitution process. In the practice exercise below (4.3), the displacement value has been taken into account in the preparation.

4.4 Calculations involving time continuous infusions

Children are often prescribed post-operative analgesia as a continuous infusion of diluted drug. In high dependency areas, children may be given continuous infusions of a variety of drugs and nutrients. In small sick babies, the total amount of fluid has to be carefully controlled, some of the drugs involved are extremely

4.3 Practice exercise

From the information below, calculate the dose to give and the recommended range in the same way as the practice examples in 4.2:

Age	Weight	Drug	Amount	Route	Frequency
$31 / 2$ years	15 kg	Cefuroxime	300 mg	IV	tds

Preparation: Powder which when reconstituted with 1.8 ml water for injection, gives a solution of 250 mg in 2 ml . (Displacement value 0.2 ml)

Recommended dose range for 2 to 12 years is $10-30 \mathrm{mg} / \mathrm{kg}$ tds

Example 10

| Age | Weight | Drug | Amount | Route Frequency |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Newborn (term) 3 kg | Dobutamine | Solution made up
 as 90 mg in total
 volume of 50 ml | IV $1 \mathrm{ml} / \mathrm{hr}$ | |
| | | | | |

Preparation: 50 mg per ml . Recommended diluent is 5% glucose for dilution to a concentration of not more than $5 \mathrm{mg} / \mathrm{ml}$
Recommended dosage is 2 - 10 microgram $/ \mathrm{kg} / \mathrm{min}$
potent and so very small amounts are involved. Accurate calculation and safety checks are absolutely essential. The following examples are taken from PICU.

Example 10 (see box above)

This looks daunting, but follow the steps shown on page 10 with additional steps as shown below.

Step 1.1: First calculate how many micrograms are contained in 1 ml of the solution made up as prescribed. NB the different units.

Start with the mg/mcg issue and SIMPLIFY first.

90 mg in $50 \mathrm{ml}=9 \mathrm{mg}$ in 5 ml .
then MULTIPLY mg by 1000 to get microgram (mcg).

9 mg in $5 \mathrm{ml}=9000 \mathrm{mcg}$ in 5 ml .

If 5 ml contains $9000 \mathrm{mcg}, 1 \mathrm{ml}$ contains $\frac{9000}{5} \mathrm{mcg}=1800 \mathrm{mcg}$.

Therefore the prescribed amount is 1800 mcg per hour.

Step 1.2: But the recommended range is given for minutes.

The amount per minute will be the hourly amount divided by 60.
$\frac{1}{60}$ of $1800 \mathrm{mcg}=\frac{1800}{60}=\frac{180}{6}=30 \mathrm{mcg}$.
So, the prescribed amount is 30mcg/minute.

Step 1.3: Is this sensible for a 3 kg baby? What is the dose per kg ?
$30 \mathrm{mcg} / \mathrm{min}$ is $30 \div 3=$ $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$.

The prescription is for $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$, which is within the recommended range.

Step 2.1: Dobutamine is available in 5 ml , ampoules containing 50 mg per ml but must be diluted to a concentration of not more than $5 \mathrm{mg} / \mathrm{ml}$. The diluent is 5% glucose and the prescribed dilution is 90 mg in a total volume of 50 ml .

Check that the prescription is within the guidelines for strength of dilution.

90 mg in $50 \mathrm{ml}=\frac{90}{50} \mathrm{mg} / \mathrm{ml}=1.8 \mathrm{mg} / \mathrm{ml}$.
This is below the recommended maximum of $5 \mathrm{mg} / \mathrm{ml}$.

Step 2.2: If dobutamine is available as $50 \mathrm{mg} / \mathrm{ml}$, then for a final solution of 90 mg we will need less than 2 ml of the concentrated drug.

Step 3: Substitute the known values in the formula to calculate the amount.
$\frac{90}{50} \times \frac{1}{1}=\frac{90}{50}=1.8 \mathrm{ml}$.

Step 4: Check this answer against the approximation from step 2.2.

The final step is to calculate how much diluent is required for the final total volume.

Total volume $=50 \mathrm{ml}$.
Concentrated drug $=1.8 \mathrm{ml}$.
Volume of diluent required $=50-1.8 \mathrm{ml}=48.2 \mathrm{ml}$.

Step 5: Conclusion: 1.8 ml dobutamine made up to 50 ml with 48.2 ml glucose 5% will give the correct solution to be infused at $1 \mathrm{ml} /$ hour.

4.4 Practice exercises

Calculate and check dilution and rates as in example 10 on page 14:

| 1 | Age | Weight | Drug | Amount | Route |
| :--- | :--- | :--- | :--- | :--- | :--- | Frequency

Preparation: Ampoules 10 mg in 2 ml . Recommended diluent 5\% glucose Recommended dose range: 1 month to 18 years, 500 nanogram $-3.3 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

2 Age	Weight	Drug	Amount	Route	Frequency
7 months	8 kg	Morphine	8 mg in 50 ml glucose 5%	IV	$0.5 \mathrm{ml} / \mathrm{hr}$

Preparation: 1 ml ampoule $10 \mathrm{mg} / \mathrm{ml}$ Recommended diluent 5\% glucose
Recommended range birth to 18 years, $5-20 \mathrm{mcg} / \mathrm{kg} / \mathrm{hr}$

Answers to practice exercises

Section $\mathbf{1 . 1}$		Section $\mathbf{2 . 1}$
1	6.25 ml	1
2	15 ml	2
2	250 nanogram	
3	15 ml	3
4	3.3 ml	4
5	0.1 ml	5

Section 2.2

150 microgram
20.2 ml

3 50,000 nanogram
40.01 ml

5 12,500 nanogram

Section 2.3

14.2 kg

2 10lb 8oz
319.1 kg

44 stone 6lb
5 8.6kg

Section 2.4

Lidocaine	$\mathrm{Mg} / \mathrm{ml}$	Microgram $/ \mathrm{ml}$
0.1%	1	1000
0.2%	2	2000
0.5%	5	5000
1%	10	10,000
2%	20	
5%	50	

Section 3.1

16.7 ml
$2 \quad 3.3 \mathrm{ml}$

Section 4.1

12 caps
$2 \quad 2.5 \mathrm{ml}$
310 ml

Section 4.2

Recommended range
$10.75 \mathrm{ml} \quad 6.5 \mathrm{mg}-13 \mathrm{mg}$ bd $=0.65-1.3 \mathrm{ml}$ bd
$23.5 \mathrm{ml} \quad 137.5 \mathrm{mg}-165 \mathrm{mg}$ bd $=3.4-4.1 \mathrm{ml}$ bd
$3 \quad 0.2 \mathrm{ml} \quad 202.5-405$ nanogram daily $=0.1-0.2 \mathrm{ml}$ daily
$4 \quad 0.18 \mathrm{ml} \quad 4.5 \mathrm{mg}$ tds $=0.18 \mathrm{ml}$ tds

Section 4.3

Recommended range
$2.4 \mathrm{ml} \quad 150-450 \mathrm{mg}=1.2-3.6 \mathrm{ml}$

Section 4.4

1 Dilution
$1.1 \quad 1000$ microgram $/ \mathrm{ml}$
1.2
1.3
$2 / 3 \quad 8 \mathrm{ml}$ drug 32 ml diluent (5\% glucose)
2
$1.1 \quad 160$ microgram $/ \mathrm{ml} \quad 80$ microgram $/ \mathrm{hr}$
$2 / 3 \quad 0.8 \mathrm{ml}$ drug and 49.2 ml diluent (5% glucose)

References

Department of Health (2004) National Service Framework for Children, Young People and Maternity Services. London, DH.
Hutton M (2003) Calculations for new prescribers. Nursing Standard. 17, 25, 47-52.
Lapham R, Agar H (2003) Drug Calculations for Nurses: A step-by-step approach (2nd ed). London, Arnold.
Nursing and Midwifery Council (2002) Code of Professional Conduct. London, NMC.
Nursing and Midwifery Council (2004a) Guidelines for the Administration of Medicines. London, NMC.
Nursing and Midwifery Council (2004b) Guidelines for Records and Record Keeping. London, NMC.
Royal College of Paediatrics and Child Health and the Neonatal and Paediatrics Pharmacists Group (2003) Pocket Medicines for Children (2nd ed). London, RCPCH.
Watt S (2003) Safe administration of medicines to children: Part 1. Paediatric Nursing. 15, 4, 40-43.
Woodrow P (1998) Numeracy skills. Nursing Standard. 12, 30, 48-55.

NOTES

Journals ${ }^{\text {© }}$

RCN Publishing
Company

RCN Publishing Company journals

Whatever your nursing specialty we have a professional journal covering your field of practice

Unlimited access to the Nursing Standard Online archives

- FREE when you subscribe*

For more information about our range of journals, or to subscribe online, visit: www.nursing-standard.co.uk

[^0]: * NOTICE

 Disclaimer: Although examples are based on recommendations of the RCPCH Pocket Medicines for Children (RCPCH 2003), these are included for calculation practice only and no responsibility is taken by the authors of this guide for accuracy of dosages.

